Nd:YAG laser-induced morphology change and photothermal conversion of gold nanorods with potential application in the treatment of port-wine stain

AbstractBased on the principle of selective photothermolysis, 1064  nm Nd:YAG laser has great potential for the treatment of deeper and larger PWS. However, the clinical effectiveness is limited because of the weak absorption of blood to Nd:YAG laser. The aim of this study is to obtain the optimal irradiation conditions to effectively destroy vascular lesions with the assistance of PEG-modified gold NRs to enhance blood absorption of Nd:YAG laser. In our study, PEG-modified gold NRs were prepared by the seeded growth method. Gold NRs after exposure to Nd:YAG laser were characterized using absorption spectra and transmission electron microscope images. The ti ssue-like phantom containing a glass capillary with blood was prepared and exposed to Nd:YAG laser to investigate the laser energy density and pulse number required for blood coagulation before and after the addition of gold NRs in blood. The results show that the millisecond Nd:YAG laser irradiatio n does not result in the shape change of gold NRs. After injection of gold NRs into the bloodstream (4.60 mg/kg), the absorbance of blood at 1064 nm increased 3.9 times. The threshold energy density for the treatment of PWS decreased by 33% (from 30 to 20 J/cm2). Our findings provide an experimental guide for choosing laser parameters and gold NRs concentration for the treatment of deeper and larger PWS with the assistance of PEG-modified gold NRs in vivo in the future.
Source: Lasers in Medical Science - Category: Laser Surgery Source Type: research