Neural Stem Cells and Fetal-Onset Hydrocephalus

Fetal-onset hydrocephalus is not only a disorder of cerebrospinal fluid (CSF) dynamics, but also a brain disorder. How can we explain the inborn and, so far, irreparable neurological impairment in children born with hydrocephalus? We hypothesize that a cell junction pathology of neural stem cells (NSC) leads to two inseparable phenomena: hydrocephalus and abnormal neurogenesis. All neurons, glial cells, and ependymal cells of the mammalian central nervous system originate from the NSC forming the ventricular zone (VZ) and the neural progenitor cells (NPC) forming the subventricular zone. Several genetic mutations and certain foreign signals all convey into a final common pathway leading to cell junction pathology of NSC and VZ disruption. VZ disruption follows a temporal and spatial pattern; it leads to aqueduct obliteration and hydrocephalus in the cerebral aqueduct, while it results in abnormal neurogenesis in the telencephalon. The disrupted NSC and NPC are released into the CSF and may transform into neurospheres displaying a junctional pathology similar to that of NSC of the disrupted VZ. These cells can then be utilized to investigate molecular alterations underlying the disease and open an avenue into possible NSC therapy.Pediatr Neurosurg
Source: Pediatric Neurosurgery - Category: Neurosurgery Source Type: research