Twenty-seven Years of Cerebral Pyruvate Recycling.

Twenty-seven Years of Cerebral Pyruvate Recycling. Neurochem Res. 2017 Jan 18;: Authors: Cerdán S Abstract Cerebral pyruvate recycling is a metabolic pathway deriving carbon skeletons and reducing equivalents from mitochondrial oxaloacetate and malate, to the synthesis of mitochondrial and cytosolic pyruvate, lactate and alanine. The pathway allows both, to provide the tricarboxylic acid cycle with pyruvate molecules produced from alternative substrates to glucose and, to generate reducing equivalents necessary for the operation of NADPH requiring processes. At the cellular level, pyruvate recycling involves the activity of malic enzyme, or the combined activities of phosphoenolpyruvate carboxykinase and pyruvate kinase, as well as of those transporters of the inner mitochondrial membrane exchanging the corresponding intermediates. Its cellular localization between the neuronal or astrocytic compartments of the in vivo brain has been controversial, with evidences favoring either a primarily neuronal or glial localizations, more recently accepted to occur in both environments. This review provides a brief history on the detection and characterization of the pathway, its relations with the early developments of cerebral high resolution (13)C NMR, and its potential neuroprotective functions under hypoglycemic conditions or ischemic redox stress. PMID: 28101749 [PubMed - as supplied by publisher]
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research