On the Verge of Immortality, Or Are We Stuck with Death? A New Direction For Research Could Provide the Answers--and More

How long can human beings live? Is there an outside limit? Do we know enough about aging to break through possible biological barriers? Is the current approach to curing "age associated diseases" like Alzheimer's flawed? Experts are sharply divided. In 1962 eminent biologist Leonard Hayflick discovered that normal human fetal cells replicate a limited number of times. This phenomenon promptly acquired the moniker the "Hayflick Limit." Later, biologists Calvin Harley and Carol Greider provided the molecular explanation for the Hayflick limit with their discovery that telomeres, the DNA biological material in every cell of our bodies, diminish each time cells divide. In contrast, cancer cells, which are immortal, produce an enzyme called telomerase that maintains the length of telomeres and enables cancer cells to replicate without limit. The strategy of extending the life of normal cells by injecting telomerase has proven thorny, as reported by Dr. Elizabeth Blackburn, co-discoverer of telomerase: "too much telomerase can help confer immortality onto cancer cells and actually increase the likelihood of cancer, whereas too little telomerase can also increase cancer by depleting the healthy regenerative potential of the body..telomerase shots are not the magical anti-aging potion...." The finite capacity of normal human fetal cells to divide (on average about 50 times) suggested to Hayflick that aging is responsible for the end of normal cell re...
Source: Healthy Living - The Huffington Post - Category: Consumer Health News Source Type: news

Related Links:

In this study, researchers studied 438,952 participants in the UK Biobank, who had a total of 24,980 major coronary events - defined as the first occurrence of non-fatal heart attack, ischaemic stroke, or death due to coronary heart disease. They used an approach called Mendelian randomisation, which uses naturally occurring genetic differences to randomly divide the participants into groups, mimicking the effects of running a clinical trial. People with genes associated with lower blood pressure, lower LDL cholesterol, and a combination of both were put into different groups, and compared against those without thes...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
We examined 9293 individuals from the Copenhagen General Population Study using nuclear magnetic resonance spectroscopy measurements of total cholesterol, free- and esterified cholesterol, triglycerides, phospholipids, and particle concentration. Fourteen subclasses of decreasing size and their lipid constituents were analysed: six subclasses were very low-density lipoprotein (VLDL), one intermediate-density lipoprotein (IDL), three low-density lipoprotein (LDL), and four subclasses were high-density lipoprotein (HDL). Remnant lipoproteins were VLDL and IDL combined. Mean nonfasting cholesterol concentration was 72...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study we show, for the first time, significant alterations in cholesterol efflux capacity in adolescents throughout the range of BMI, a relationship between six circulating adipocyte-derived EVs microRNAs targeting ABCA1 and cholesterol efflux capacity, and in vitro alterations of cholesterol efflux in macrophages exposed to visceral adipose tissue adipocyte-derived EVs acquired from human subjects. These results suggest that adipocyte-derived EVs, and their microRNA content, may play a critical role in the early pathological development of ASCVD. Commentary on the Developing UK Government Position on Hea...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study elucidates the potential to use mitochondria from different donors (PAMM) to treat UVR stress and possibly other types of damage or metabolic malfunctions in cells, resulting in not only in-vitro but also ex-vivo applications. Gene Therapy in Mice Alters the Balance of Macrophage Phenotypes to Slow Atherosclerosis Progression https://www.fightaging.org/archives/2019/07/gene-therapy-in-mice-alters-the-balance-of-macrophage-phenotypes-to-slow-atherosclerosis-progression/ Atherosclerosis causes a sizable fraction of all deaths in our species. It is the generation of fatty deposits in blood vessel...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This popular science article from the AARP is representative of the sort of outsider's view of the longevity industry that is presently dominant. On the one hand, it is good that the media and advocacy organizations such as AARP are finally talking seriously about treating aging as a medical condition. On the other hand, the author looks at two of the most popular areas of development, mTOR inhibitors and senolytics, in a way that makes them seem more or less equivalent, and then further adds diet and exercise as another equivalent strategy. This will be continuing issue, I fear. People, as a rule, don't think about size o...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
In conclusion, there is solid evidence that obesity deregulates cellular mechanisms related to nutrient sensing. Altered Intercellular Communication It is accepted that aging impacts the organism at the cellular level, but also decreases the capacity of cells of an organism to interact. During aging, there is a decreased communication at the neuronal, neuroendocrine, and endocrine levels. Two of the most compelling examples of impaired communication are inflammaging and immunosenescence. The inflammaging phenotype results in elevated cytokines. These cytokines can accelerate and propagate the aging process. T...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we found that cofilin competes with tau for direct microtubule binding in vitro, in cells, and in vivo, which inhibits tau-induced microtubule assembly. Genetic reduction of cofilin mitigates tauopathy and synaptic defects in Tau-P301S mice and movement deficits in tau transgenic C. elegans. The pathogenic effects of cofilin are selectively mediated by activated cofilin, as active but not inactive cofilin selectively interacts with tubulin, destabilizes microtubules, and promotes tauopathy. These results therefore indicate that activated cofilin plays an essential intermediary role in neurotoxic signaling th...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, a significant (30%) increase in maximum lifespan of mice was found after nonablative transplantation of 100 million nucleated bone marrow (BM) cells from young donors, initiated at the age that is equivalent to 75 years for humans. Moreover, rejuvenation was accompanied by a high degree of BM chimerism for the nonablative approach. Six months after the transplantation, 28% of recipients' BM cells were of donor origin. The relatively high chimerism efficiency that we found is most likely due to the advanced age of our recipients having a depleted BM pool. In addition to the higher incorporation rates, ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Conclusions In conclusion, articles in this Research Topic made a very significant contribution to our understanding of the role played by environmental factors, dysbiotic conditions, and infections in triggering diseases. Since this is a rapidly expanding area of research, many other factors contributing to the onset of these diseases are not covered here. We are confident, however, that further studies will expand the list as well as bring a better understanding of mechanisms involved in the onset of autoimmune and autoinflammatory diseases. Author Contributions All authors listed have made a substantial, direct and i...
Source: Frontiers in Microbiology - Category: Microbiology Source Type: research
ConclusionThe most advanced phase III clinical applications led to the development of two vaccines containing QS-21 as part of AS, the Herpes Zoster vaccine (HZ/su) (ShingrixTM) which received a license in 2017 from the FDA and a marketing authorization in EU in 2018 and the RTS,S/AS01 vaccine (MosquirixTM) against malaria which was approved by the EMA in 2015 for further implementation in Sub Saharan countries for routine use.Graphical abstract
Source: Phytomedicine - Category: Drugs & Pharmacology Source Type: research
More News: Alzheimer's | Biology | Cambridge University | Cancer | Cancer & Oncology | Cancer Vaccines | Cardiology | Cardiovascular | Genetics | Geriatrics | Graduation | Grants | Heart | International Medicine & Public Health | Men | Molecular Biology | New York University | Nutrition | Politics | Science | Study | Vaccines | Vitamin B3 | Websites