Mining Biological Networks from Full-Text Articles

The study of biological networks is playing an increasingly important role in the life sciences. Many different kinds of biological system can be modelled as networks; perhaps the most important examples are protein–protein interaction (PPI) networks, metabolic pathways, gene regulatory networks, and signalling networks. Although much useful information is easily accessible in publicly databases, a lot of extra relevant data lies scattered in numerous published papers. Hence there is a pressing need for automated text-mining methods capable of extracting such information from full-text articles. Here we present practical guidelines for constructing a text-mining pipeline from existing code and software components capable of extracting PPI networks from full-text articles. This approach can be adapted to tackle other types of biological network.
Source: Springer protocols feed by Bioinformatics - Category: Bioinformatics Source Type: news