Development of a Web-enabled SVR-based Machine Learning Platform and Its Application on Modeling Transgene Expression Activity of Aminoglycoside-derived Polycations.

Development of a Web-enabled SVR-based Machine Learning Platform and Its Application on Modeling Transgene Expression Activity of Aminoglycoside-derived Polycations. Comb Chem High Throughput Screen. 2016 Dec 28; Authors: Zhen Z, Potta T, Lanzillo NA, Rege K, Breneman CM Abstract Support Vector Regression (SVR) has become increasingly popular in cheminformatics modeling. As a result, SVR-based machine learning algorithms, including Fuzzy-SVR and Least Square-SVR (LS-SVR) have been developed and applied in various research areas. However, at present, few downloadable packages or public-domain software are available for these algorithms. To address this need, we developed the Support vector regression-based Online Learning Equipment (SOLE) web tool (available at http://reccr.chem.rpi.edu/SOLE/index.html) as an online learning system to support predictive cheminformatics and materials informatics studies. SOLE has a user-friendly interface and includes routine elements of performing QSAR/QSPR studies that can be applied in various research areas. It utilizes rational and sophisticated feature selection, model selection and model evaluation processes. In this work, we employed the SOLE system to model transgene expression efficacy of polymers obtained from aminoglycoside antibiotics, which allowed the results of several modeling approaches to be easily compared. PMID: 28031013 [PubMed - as supplied by publisher]
Source: Combinatorial Chemistry and High Throughput Screening - Category: Chemistry Authors: Tags: Comb Chem High Throughput Screen Source Type: research