oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca(2+) /K(+) channel flow.

oxLDL antibody inhibits MCP-1 release in monocytes/macrophages by regulating Ca(2+) /K(+) channel flow. J Cell Mol Med. 2016 Dec 20;: Authors: Su J, Zhou H, Liu X, Nilsson J, Fredrikson GN, Zhao M Abstract oxLDL peptide vaccine and its antibody adoptive transferring have shown a significantly preventive or therapeutic effect in atherosclerotic animal model. The molecular mechanism behind this is obscure. Here, we report that oxLDL induces MCP-1 release in monocytes/macrophages through their TLR-4 (Toll-like receptor 4) and ERK MAPK pathway and is calcium/potassium channel-dependent. Using blocking antibodies against CD36, TLR-4, SR-AI and LOX-1, only TLR-4 antibody was found to have an inhibitory effect and ERK MAPK-specific inhibitor (PD98059) was found to have a dramatic inhibitory effect compared to inhibitors of other MAPK group members (p38 and JNK MAPKs) on oxLDL-induced MCP-1 release. The release of cytokines and chemokines needs influx of extracellular calcium and imbalance of efflux of potassium. Nifedipine, a voltage-dependent calcium channel (VDCC) inhibitor, and glyburide, an ATP-regulated potassium channel (K(+)ATP ) inhibitor, inhibit oxLDL-induced MCP-1 release. Potassium efflux and influx counterbalance maintains the negative potential of macrophages to open calcium channels, and our results suggest that oxLDL actually induces the closing of potassium influx channel - inward rectifier channel (Kir ) and ensuing the op...
Source: J Cell Mol Med - Category: Molecular Biology Authors: Tags: J Cell Mol Med Source Type: research