Tebufenozide induces G1/S cell cycle arrest and apoptosis in human cells

This study will investigate the apoptotic molecular mechanisms which result from tebufenozide-induced DNA damage in HeLa cells. Our results demonstrate that tebufenozide could trigger arrest in G1/S phase related to a downregulation of cyclin E and cyclin-dependent kinase (CDK) 2 protein. In addition, Western blotting showed apoptosis was associated with the upregulation of p53, Bax and cleaved-PARP, as well as downregulation of Bcl-2 and PARP. Tebufenozide also regulated changes in mitochondrial permeability and reduced mitochondrial number and intracellular ATP production. Briefly, these results suggest that tebufenozide- induces cell cycle arrest and apoptosis through activating p53 protein in a Bax- and Bcl-2-triggered mitochondrial pathway. This work provides some scientific context for the safe use of tebufenozide in agriculture.
Source: Environmental Toxicology and Pharmacology - Category: Environmental Health Source Type: research