Design and Synthesis of Functional Molecules Based on Complexation and Their Biological Applications.

Design and Synthesis of Functional Molecules Based on Complexation and Their Biological Applications. Yakugaku Zasshi. 2016;136(12):1601-1611 Authors: Hisamatsu Y Abstract  In this review, we introduce the development of supermolecules, host-guest complexes, and metal complexes formed from the combination of non-covalent interactions and/or coordination bonds, as well as their biological applications. An adenine selective host molecule 1 provides a correctly oriented array of complementary hydrogen bonding sites for the adenine nucleobase. Furthermore, the new DDAA (D: hydrogen bond donor, A: hydrogen bond acceptor) module 4 and ADDA module 7 have been developed as quadruple hydrogen-bonding modules. A quadruple zwitterion 8 forms supramolecular gel in dimethyl sulfoxide, driven by the formation of ion-paired dimers between the zwitterionic units. The obtained supramolecular gel exhibits reversible gel-sol transitions in response to both acid, base, and heating. Self-assembly of a dimeric zinc(II) complex, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution provides 4 : 4 : 4 and 2 : 2 : 2 supermolecules 10 and 11, respectively. These supermolecules possess Cu2(μ-OH)2 centers, and accelerate the hydrolysis of a phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. Regioselective substitution reactions of tris-cyclometalated iridium (Ir) com...
Source: Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan - Category: Drugs & Pharmacology Authors: Tags: Yakugaku Zasshi Source Type: research