Estimation of total genetic effects for survival time in crossbred laying hens showing cannibalism, using pedigree or genomic information

Summary Mortality of laying hens due to cannibalism is a major problem in the egg‐laying industry. Survival depends on two genetic effects: the direct genetic effect of the individual itself (DGE) and the indirect genetic effects of its group mates (IGE). For hens housed in sire‐family groups, DGE and IGE cannot be estimated using pedigree information, but the combined effect of DGE and IGE is estimated in the total breeding value (TBV). Genomic information provides information on actual genetic relationships between individuals and might be a tool to improve TBV accuracy. We investigated whether genomic information of the sire increased TBV accuracy compared with pedigree information, and we estimated genetic parameters for survival time. A sire model with pedigree information (BLUP) and a sire model with genomic information (ssGBLUP) were used. We used survival time records of 7290 crossbred offspring with intact beaks from four crosses. Cross‐validation was used to compare the models. Using ssGBLUP did not improve TBV accuracy compared with BLUP which is probably due to the limited number of sires available per cross (~50). Genetic parameter estimates were similar for BLUP and ssGBLUP. For both BLUP and ssGBLUP, total heritable variance (T2), expressed as a proportion of phenotypic variance, ranged from 0.03 ± 0.04 to 0.25 ± 0.09. Further research is needed on breeding value estimation for socially affected traits measured on individuals kept in single‐family...
Source: Journal of Animal Breeding and Genetics - Category: Genetics & Stem Cells Authors: Tags: Original Article Source Type: research
More News: Genetics