Rounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs

During volume-modulated arc therapies (VMAT), dosimetric errors are introduced by multiple open dynamic leaf gaps that are present in fixed diaphragm linear accelerators. The purpose of this work was to develop a methodology for adjusting the rounded leaf end modeling parameters to improve out-of-field dose agreement in SmartArc VMAT treatment plans delivered by fixed jaw linacs where leaf gap dose is not negligible. Leaf gap doses were measured for an Elekta beam modulator linac with 0.4 cm micro-multileaf collimators (MLC) using an A16 micro-ionization chamber, a MatriXX ion chamber detector array, and Kodak EDR2 film dosimetry in a solid water phantom. The MLC offset and rounded end tip radius were adjusted in the Pinnacle treatment planning system (TPS) to iteratively arrive at the optimal configuration for 6 MV and 10 MV photon energies. Improvements in gamma index with a 3%/3 mm acceptance criteria and an inclusion threshold of 5% of maximum dose were measured, analyzed, and validated using an ArcCHECK diode detector array for field sizes ranging from 1.6 to 14 cm square field arcs and Task Group (TG) 119 VMAT test cases. The best results were achieved for a rounded leaf tip radius of 13 cm with a 0.1 cm MLC offset. With the optimized MLC model, measured gamma indices ranged between 99.9% and 91.7% for square field arcs with sizes between 3.6 cm and 1.6 cm, with a maximum improvement of 42.7% for the 1.6 cm square field size. Gamma indices improved up to 2.8% in TG-119 ...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Source Type: research