BAG3 as a Target to Reduce Reperfusion Injury in Heart Tissues

There have been a number of life science discoveries of late that might lead to therapies capable of reducing the level of tissue damage caused by structural failures in important blood vessels, the basis for a range of age-related conditions. News of another possible approach arrived recently, and you will find links to the publicity materials and open access paper below. Blood vessel failures cause an interruption of oxygenated blood flow to tissues, and depending on the location in the body and size of the failed vessel, can produce the dramatic symptoms of stroke, heart attack, and so forth. While methods of prevention are far preferable to methods the produce greater than normal resilience, if the resilience is on offer it would be foolish to turn it down. In ischemic injuries where blood flow is lost for a period of time, the real damage is done not after blood supply ceases, but after it is restored. With renewed oxygenation, cells fall into a self-sabotaging state of intense activity and die in large numbers. Of course if blood supply is never restored, the same end result occurs and the tissue dies, but reperfusion injury is perhaps the biggest threat in stroke, heart attack, and the like. Thus there is great interest in the research community in finding ways to reduce this damage, and many different methodologies have been tried, sadly to little success. Now that researchers are getting a better handle on the cellular biochemistry of ischemia and reperfusion,...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs