Magnesium and embryonic development.

Magnesium and embryonic development. Magnes Res. 2014 Apr 11; Authors: Komiya Y, Su LT, Chen HC, Habas R, Runnels LW Abstract Important for energy metabolism, neurotransmission, bone stability, and other cellular functions, Mg(2+) has well-established and undisputedly critical roles in adult tissues. Its contributions to early embryonic development are less clearly understood. For decades it has been known that gestational Mg(2+) deficiency in rodents produces teratogenic effects. More recent studies have linked deficiency in this vital cation to birth defects in humans, including spina bifida, a neural fold closure defect in humans that occurs at an average rate of 1 per 1000 pregnancies. The first suggestion that Mg(2+) may be playing a more specific role in early development arose from studies of the TRPM7 and TRPM6 ion channels. TRPM7 and TRPM6 are divalent-selective ion channels in possession of their own kinase domains that have been implicated in the control of Mg(2+) homeostasis in vertebrates. Disruption of the functions of these ion channels in mice as well as in frogs interferes with gastrulation, a pivotal process during early embryonic development that executes the emergence of the body plan and closure of the neural tube. Surprisingly, gastrulation defects produced by depletion of TRPM7 can be prevented by Mg(2+) supplementation, indicating an essential role for Mg(2+) in gastrulation and neural fold closure. The aim of...
Source: Magnesium Research - Category: Biochemistry Authors: Tags: Magnes Res Source Type: research