Role of endogenous hydrogen sulfide in nerve-evoked relaxation of pig terminal bronchioles

This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 μm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine β-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K+, transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K+ concentration inhibited the GYY4137 relaxation. Large conductance Ca2+-activated K+ channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca2+]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced v...
Source: Pulmonary Pharmacology and Therapeutics - Category: Respiratory Medicine Source Type: research