Interaction of a relativistic dense electron beam with a laser wiggler in a vacuum: self-field effects on the electron orbits and free-electron laser gain

Employing laser wigglers and accelerators provides the potential to dramatically cut the size and cost of X-ray light sources. Owing to recent technological developments in the production of high-brilliance electron beams and high-power laser pulses, it is now conceivable to make steps toward the practical realisation of laser-pumped X-ray free-electron lasers (FELs). In this regard, here the head-on collision of a relativistic dense electron beam with a linearly polarized laser pulse as a wiggler is studied, in which the laser wiggler can be realised using a conventional quantum laser. In addition, an external guide magnetic field is employed to confine the electron beam against self-fields, therefore improving the FEL operation. Conditions allowing such an operating regime are presented and its relevant validity checked using a set of general scaling formulae. Rigorous analytical solutions of the dynamic equations are provided. These solutions are verified by performing calculations using the derived solutions and well known Runge – Kutta procedure to simulate the electron trajectories. The effects of self-fields on the FEL gain in this configuration are estimated. Numerical calculations indicate that in the presence of self-fields the sensitivity of the gain increases in the vicinity of resonance regions. Besides, diamagnetic and paramagnetic effects of the wiggler-induced self-magnetic field cause gain decrement and enhancement for different electron orbits, while these...
Source: Journal of Synchrotron Radiation - Category: Physics Authors: Tags: dense electron beam laser wiggler self-fields stability analysis free-electron laser research papers Source Type: research
More News: Physics