Dephosphorylation of the Retinoblastoma protein (Rb) inhibits cancer cell EMT via Zeb.

In this study, the effect of Rb dephosphorylation on the epithelial to mesenchymal transition (EMT) was determined. The EMT transition is observed in cancer cells that have acquired invasive characteristics. In breast cancer cells grown in 3D Matrigel cultures, MCF7 cells undergo apoptosis in response to Rb dephosphorylation, whereas MDA-MB-231 and Hs578T cells exhibit a reduction in the EMT. Cells devoid of phosphorylated Rb (nontransformed MCF10A and Rb-null MDA-MB-468) lacked any response to PNUTS depletion, showing the effect is Rb-dependent. In addition, these studies showed that Rb dephosphorylation in 3D Matrigel cultures of highly invasive HT1080 cells led to the inhibition of the EMT. Furthermore we observed association between dephosphorylated Rb with ZEB1, a zinc-finger E-box-binding transcription factor that regulates expression of E- and N-cadherins. Finally Rb dephosphorylation led to inhibition of ZEB1 transcriptional activity, this data supports the notion that Rb dephosphorylation modulates the EMT. These studies suggest targeting Rb phosphorylation in mesenchymal cancer cells may decrease invasiveness. PMID: 27645778 [PubMed - as supplied by publisher]
Source: Cancer Biology and Therapy - Category: Cancer & Oncology Authors: Tags: Cancer Biol Ther Source Type: research