Astroglial Vesicular Trafficking in Neurodegenerative Diseases.

Astroglial Vesicular Trafficking in Neurodegenerative Diseases. Neurochem Res. 2016 Sep 14; Authors: Zorec R, Parpura V, Verkhratsky A Abstract The neocortex represents one of the largest estates of the human brain. This structure comprises ~30-40 billions of neurones and even more of non-neuronal cells. Astrocytes, highly heterogeneous homoeostatic glial cells, are fundamental for housekeeping of the brain and contribute to information processing in neuronal networks. Gray matter astrocytes tightly enwrap synapses, contact blood vessels and, naturally, are also in contact with the extracellular space, where convection of fluid takes place. Thus astrocytes receive signals from several distinct extracellular domains and can get excited by numerous mechanisms, which regulate cytosolic concentration of second messengers, such as Ca(2+) and cAMP. Excited astrocytes often secrete diverse substances (generally referred to as gliosignalling molecules) that include classical neurotransmitters such as glutamate and ATP or neuromodulators such as D-serine or neuropeptides. Astrocytic secretion occurs through several mechanisms: by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release of gliosignalling molecules appears fundamentally similar to that operating in neurones, since it depends on the SNARE proteins-dependent merger of the vesicle membrane with the plasmalemm...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research