Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury.

Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp Neurol. 2016 Aug 28; Authors: Hormigo KM, Zholudeva LV, Spruance VM, Marchenko V, Cote MP, Vinit S, Giszter S, Bezdudnaya T, Lane MA Abstract Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research. PMID: 27582085 [PubMed - as supplied by publisher]
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research