Effect of the normalized prescription isodose line on the magnitude of Monte Carlo vs. pencil beam target dose differences for lung stereotactic body radiotherapy

In lung stereotactic body radiotherapy (SBRT) cases, the pencil beam (PB) dose calculation algorithm is known to overestimate target dose as compared to the more accurate Monte Carlo (MC) algorithm. We investigated whether changing the normalized prescription isodose line affected the magnitude of MC vs. PB target dose differences. Forty-eight patient plans and twenty virtual-tumor phantom plans were studied. For patient plans, four alternative plans prescribed to 60%, 70%, 80%, and 90% isodose lines were each created for 12 patients who previously received lung SBRT treatments. Using 6 MV dynamic conformal arcs, the plans were individually optimized to achieve similar dose coverage and conformity for all plans of the same patient, albeit at the different prescription levels. These plans, having used a PB algorithm, were all recalculated with MC to compare the target dose differences. The relative MC vs. PB target dose variations were investigated by comparing PTV D95, Dmean, and D5 loss at the four prescription levels. The MC-to-PB ratio of the plan heterogeneity index (HI) was also evaluated and compared among different isodose levels. To definitively demonstrate the cause of the isodose line dependence, a simulated phantom study was conducted using simple, spherical virtual tumors planned with uniform block margins. The tumor size and beam energy were also altered in the phantom study to investigate the interplay between these confounding factors and the isodose line effec...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Source Type: research
More News: Physics | Study