CD4(+)CD25(hi)Foxp3(+) Cells Exacerbate Bleomycin-Induced Pulmonary Fibrosis.

CD4(+)CD25(hi)Foxp3(+) Cells Exacerbate Bleomycin-Induced Pulmonary Fibrosis. Am J Pathol. 2016 Jun 15; Authors: Birjandi SZ, Palchevskiy V, Xue YY, Nunez S, Kern R, Weigt SS, Lynch JP, Chatila TA, Belperio JA Abstract Idiopathic pulmonary fibrosis is a fatal lung disease with a median survival of 2 to 5 years. A decade of studies has downplayed inflammation contributing to its pathogenesis. However, these studies preceded the discovery of regulatory T cells (Tregs) and all of their functions. On the basis of human studies demonstrating Tregs can decrease graft-versus-host disease and vasculitides, there is consideration of their use to treat idiopathic pulmonary fibrosis. We hypothesized that Treg therapy would attenuate the fibroplasia involved in a preclinical murine model of pulmonary fibrosis. IL-2 complex was used in vivo to expand CD4(+)CD25(hi)Foxp3(+) cells in the lung during intratracheal bleomycin challenge; however, this unexpectedly led to an increase in lung fibrosis. More important, this increase in fibrosis was a lymphocyte-dependent process. We corroborated these results using a CD4(+)CD25(hi)Foxp3(+) cellular-based therapy. Mechanistically, we demonstrated that CD4(+)CD25(hi)Foxp3(+) cells undergo alterations during bleomycin challenge and the IL-2 complex had no effect on profibrotic (eg, transforming growth factor-β) or type 17 immune response cytokines; however, there was a marked down-regulation of the type 1 ...
Source: The American Journal of Pathology - Category: Pathology Authors: Tags: Am J Pathol Source Type: research
More News: Pathology | Study