Effects of various LED light spectra on antioxidant and immune response in juvenile rock bream, Oplegnathus fasciatus exposed to bisphenol A

Publication date: Available online 31 May 2016 Source:Environmental Toxicology and Pharmacology Author(s): Ji Yong Choi, Tae Hwan Kim, Young Jae Choi, Na Na Kim, Sung-Yong Oh, Cheol Young Choi Bisphenol A (BPA) is a monomer used in plastics and plasticizers. As an environmental toxin included in industrial wastewater, it contaminates the aquatic environment and is known to cause endocrine disruption in fish. Particular wavelengths of light-emitting diodes (LEDs) are known to affect the endocrine regulation of fish. The present study aimed to investigate the effects of green and red LED light on the antioxidant and immune systems in juvenile rock bream (Oplegnathus fasciatus) exposed to BPA. We used green and red LED exposure at two intensities (0.3 and 0.5W/m2) for 1, 3, and 5 days. We measured liver mRNA expression and plasma levels of antioxidant enzyme superoxide dismutase (SOD) and caspase-3. Furthermore, we measured plasma levels of hydrogen peroxide (H2O2), lipid peroxidation (LPO), melatonin, and immunoglobulin M (IgM). DNA damage and apoptotic activity were measured using comet and terminal transferase dUTP nick end labeling (TUNEL) assays, respectively. We found that SOD, H2O2, and LPO increased significantly, whereas melatonin and IgM decreased significantly, suggesting that BPA induces oxidative stress and reduces immune function. Likewise, both DNA damage and apoptotic activity increased following BPA exposure. However, we found that exposure to gr...
Source: Environmental Toxicology and Pharmacology - Category: Environmental Health Source Type: research