Holding our breath in our modern world: will mitochondria keep the pace with climate changes?

Canadian Journal of Zoology, Volume 0, Issue 0, Page 1-11, e-First articles. Changes in environmental temperature can pose considerable challenges to animals and shifts in thermal habitat have been shown to be a major force driving species’ adaptation. These adaptations have been the focus of major research efforts to determine the physiological or metabolic constraints related to temperature and to reveal the phenotypic characters that can or should adjust. Considering the current consensus on climate change, the focus of research will likely shift to questioning whether ectothermic organisms will be able to survive future modifications of their thermal niches. Organisms can adjust to temperature changes through physiological plasticity (e.g., acclimation), genetic adaptation, or via dispersal to more suitable thermal habitats. Thus, it is important to understand what genetic and phenotypic attributes—at the individual, population, and species levels—could improve survival success. These issues are particularly important for ectotherms, which are in thermal equilibrium with the surrounding environment. To start addressing these queries, we should consider what physiological or metabolic functions are responsible for the impact of temperature on organisms. Some recent developments indicate that mitochondria are key metabolic structures determining the thermal range that an organism can tolerate. The catalytic capacity of mitochondria is highly sensitive to thermal...
Source: Canadian Journal of Zoology - Category: Zoology Tags: article Source Type: research