Are simple IMRT beams more robust against MLC error? Exploring the impact of MLC errors on planar quality assurance and plan quality for different complexity beams.

This study investigated the impact of beam complexities on planar quality assur-ance and plan quality robustness by introducing MLC errors in intensity-modulate radiation therapy. Forty patients' planar quality assurance (QA) plans were enrolled in this study, including 20 dynamic MLC (DMLC) IMRT plans and 20 static MLC (SMLC) IMRT plans. The total beam numbers were 150 and 160 for DMLC and SMLC, respectively. Six different magnitudes of MLC errors were introduced to these beams. Gamma pass rates were calculated by comparing error-free fluence and error-induced fluence. The plan quality variation was acquired by comparing PTV coverage. Eight complexity scores were calculated based on the beam flu-ence and the MLC sequence. The complexity scores include fractal dimension, monitor unit, modulation index, fluence map complexity, weighted average of field area, weighted average of field perimeter, and small aperture ratio (< 5 cm2 and < 50cm2). The Spearman's rank correlation coefficient was calculated to analyze the correlation between these scores and gamma pass rate and plan quality varia-tion. For planar QA, the most significant complexity index was fractal dimension for DMLC (p = -0.40) and weighted segment area for SMLC (p = 0.27) at low magnitude MLC error. For plan quality, the most significant complexity index was weighted segment perimeter for DMLC (p = 0.56) and weighted segment area for SMLC (p= 0.497) at low magnitude MLC error. The sensitivity of plana...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Authors: Tags: J Appl Clin Med Phys Source Type: research