δ-Cadinene, Calarene and δ-4-Carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes.

δ-Cadinene, Calarene and δ-4-Carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb Chem High Throughput Screen. 2016 May 6; Authors: Govindarajan M, Rajeswary M, Benelli G Abstract Mosquitoes (Diptera: Culicidae) are major vectors of important pathogens and parasites. Malaria, dengue fever, yellow fever, filariasis, schistosomiasis and Japanese encephalitis cause millions of deaths every year. Mosquito control is being challenging due to the development of pesticide resistance and negative environmental concerns. In this scenario, plants employed in traditional Asian medicine may be alternative sources of newer and effective mosquitocides. In this research, we evaluated the larvicidal activity of Kadsura heteroclita leaf essential oil (EO) and its major chemical constituents (δ-Cadinene, Calarene and δ-4-Carene) against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the essential oil of K. heteroclita contained 33 compounds. The major chemical components were δ-Cadinene (18.3%), Calarene (14.8%) and δ-4-Carene (12.5%). The EO had a significant toxic effect against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 102.86, 111.79 an...
Source: Combinatorial Chemistry and High Throughput Screening - Category: Chemistry Authors: Tags: Comb Chem High Throughput Screen Source Type: research