Spinal cord regeneration might actually be helped by glial scar tissue, contrary to conventional wisdom

Neuroscientists have long believed that scar tissue formed by glial cells — the cells that surround neurons in the central nervous system — impedes damaged nerve cells from regrowing after a brain or spinal cord injury. So it’s no wonder that researchers have assumed that if they could find a way to remove or counteract that scar tissue, injured neurons might spontaneously repair themselves. A new study by UCLA scientists now shows that this assumption might have been impeding research on repairing spinal cord injuries. In a study using mice, Dr. Michael Sofroniew and colleagues found that the glial scar tissue that forms after spinal cord damage might actually favor nerve cell regeneration. The research, published in Nature, could ultimately lead to new approaches to repair catastrophic spinal cord injury. “For 20 years, we have been applying technologies to prevent glial scarring in hopes of promoting nerve fiber regeneration, repair and recovery, but never observed a positive effect,” said Sofroniew, a professor of neurobiology at the David Geffen School of Medicine at UCLA. “Now we find that disrupting glial scars actually harms nerve fiber regeneration that can be stimulated by specific growth factors.” The spinal cord is a thick cable of nerve projections called axons that course from the brain to activate muscles, and from sensory organs back to the brain to provide feedback. Unlike peripheral nerves, which re-sprout axons when they are damaged, mature s...
Source: UCLA Newsroom: Health Sciences - Category: Universities & Medical Training Source Type: news