Cellular and network-level adaptations to in utero methadone exposure along the ventral respiratory column in the neonate rat.

Cellular and network-level adaptations to in utero methadone exposure along the ventral respiratory column in the neonate rat. Exp Neurol. 2016 Mar 20; Authors: Gourévitch B, Cai J, Mellen N Abstract Neonatal abstinence syndrome (NAS) occurs in babies chronically exposed to opioids during pregnancy. NAS shares features with opioid withdrawal symptoms seen in adults, including autonomic dysregulation. Here, the effect of low-dose in utero methadone (MTD) exposure on respiration-modulated networks along the ventral respiratory column (VRC) in ventrolateral medulla was investigated in the neonate Sprague-Dawley rat. MTD was administered via drinking water (3mg/kg/day in drinking water of the mother E7-E21). Lower expression levels of myelin-associated proteins phosphorylated axonal neurofilament subunit H (pNFH), 2',3'-Cyclicnucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP), in MTD-exposed pups compared to controls at P3, P6 and P10 indicated MTD transport across the placenta. We investigated whether in utero MTD exposure led to network-level excitability changes consistent with tolerance, and also probed for changes in endogenous opioid modulation of respiratory networks. To this end, high-speed (45.5Hz) optical recordings of respiratory network activity in control and MTD-exposed neonate (P0-P2) pups before and during administration of the μ-opioid receptor antagonist naloxone (NAL; 10μM) were carried out. Spi...
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research