Tuning the geometry and biomimetic catalytic activity of manganese(III)-tetrabromocatecholate based robust platforms by introducing substitution at pyridine.

Tuning the geometry and biomimetic catalytic activity of manganese(III)-tetrabromocatecholate based robust platforms by introducing substitution at pyridine. J Inorg Biochem. 2016 Mar 2;159:96-106 Authors: Jana NC, Brandão P, Panja A Abstract The present report describes synthesis, characterization, crystal structures and catecholase activity of a series of five new manganese(III) complexes (1-5) derived from redox-noninnocent tetrabromocatecholate ligand in combination with different substituted pyridines. X-ray crystallography reveals that the geometry of manganese(III) centers in 1 and 2 is square pyramidal and they are pseudo-dimeric in the solid state resulting from the weak bonding of manganese(III) with a catecholate oxygen atom from the adjacent manganese(III) unit together with other weak interactions like hydrogen bonding and π⋯π stacking interactions. On the other hand, complexes 3-5 are discrete octahedral structures. All the complexes exhibit strong catecholase activity and their diverse catalytic activity can nicely be explained by the nature of substitution at pyridine ring - better electron donor inhibits the reduction of the metal center thereby lowering catecholase activity and vice versa (1 and 2 vs. 3-5). Besides the donor property of ancillary ligands, the structural distortion has also significant role in the biomimetic catalytic activity (1 vs. 2). PMID: 26970727 [PubMed - as supplied by publisher]
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry | Manganese