Mapping Time-course Mitochondrial Adaptations in the Kidney in Experimental Diabetes

Oxidative phosphorylation drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homeostasis. In diabetic kidney disease, mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics, have not been previously documented. Here, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks) a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells of diabetic kidneys were clearly apparent, but no change urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary Kidney injury molecule (Kim)-1 excretion, where an increase in Complex I-linked oxygen consumption rate, in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may...
Source: Clinical Science - Category: Biomedical Science Authors: Tags: PublishAheadOfPrint Source Type: research