Catalytic reduction of dioxygen with modified Thermus thermophilus cytochrome c552.

Catalytic reduction of dioxygen with modified Thermus thermophilus cytochrome c552. J Inorg Biochem. 2016 Jan 20;157:8-14 Authors: Husband J, Aaron MS, Bains RK, Lewis AR, Warren JJ Abstract Efficient catalysis of the oxygen reduction reaction (ORR) is of central importance to function in fuel cells. Metalloproteins, such as laccase (Cu) or cytochrome c oxidase (Cu/Fe-heme) carry out the 4H(+)/4e(-) reduction quite efficiently, but using large, complex protein frameworks. Smaller heme proteins also can carry out ORR, but less efficiently. To gain greater insight into features that promote efficient ORR, we expressed, characterized, and investigated the electrochemical behavior of six new mutants of cytochrome c552 from Thermus thermophilus: V49S/M69A, V49T/M69A, L29D/V49S/M69A, P27A/P28A/L29D/V49S/M69A, and P27A/P28A/L29D/V49T/M69A. Mutation to V49 causes only minor shifts to Fe(III/II) reduction potentials (E°'), but introduction of Ser provides a hydrogen bond donor that slightly enhances oxygen reduction activity. Mutation of L29 to D induces small shifts in heme optical spectra, but not to E°' (within experimental error). Replacement of P27 and P28 with A in both positions induces a -50mV shift in E°', again with small changes to the optical spectra. Both the optical spectra and reduction potentials have signatures consistent with peroxidase enzymes. The V49S and V49T mutations have the largest impact of ORR catalysis, suggest...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research
More News: Biochemistry | Chemistry