UCLA researchers team up with robot for solutions to debilitating knee injuries

“Why do you need such a big robot?” Bioengineering researcher Keith Markolf frequently gets this question when colleagues visiting from around the world first lay eyes on the 8-foot-tall, pumpkin-orange behemoth dominating the UCLA Orthopaedic Biomechanics Laboratory at UCLA’s Rehabilitation Center. The industrial robot, diverted from a thankless job in an auto assembly plant in Detroit, has taken on a second life as an explorer into the workings of the human knee. The hulking robot thumps away incessantly, applying hundreds of pounds of force to a cadaver knee specimen implanted with a custom-designed sensor that measures forces in a knee ligament — a technique used nowhere else in the world but in this laboratory. Pairing this setup with a computer program that analyzes every move, Markolf and his collaborators at UCLA’s David Geffen School of Medicine — bioengineer Daniel Boguszewski and orthopaedic surgeon Dr. David McAllister — are shedding new light on how the knee works, how it gets injured and how best to repair it. “We need a big robot to simulate big forces,” Markolf explained. It is estimated that our knees absorb two to three times our body weight while we’re walking, and almost twice that during intense sports activities. This means that a leisurely walk or climbing up or down stairs can put up to 360 pounds of force on the knees of a person who weighs just 120 pounds. Add speed and impact during sports and the numbers multiply: A 215-pound fo...
Source: UCLA Newsroom: Health Sciences - Category: Universities & Medical Training Source Type: news