Influence of microvascular dysfunction on regional myocardial deformation post-acute myocardial infarction: insights from a novel angiographic index for assessing myocardial tissue-level reperfusion

Abstract To investigate the impact of microvascular dysfunction assessed by angiography on myocardial deformation assessed by two-dimensional speckle-tracking echocardiography in ST-segment elevation myocardial infarction (STEMI). A total of 121 STEMI patients who received primary percutaneous coronary intervention were included. Thrombolysis in myocardial infarction, Myocardial Perfusion Frame Count (TMPFC), a novel angiographic method to assess myocardial perfusion, was used to evaluate microvascular dysfunction. Two-dimensional speckle-tracking echocardiography was performed at 3–7 days after reperfusion. The infarction related regional longitudinal (RLS) strains as well as circumferential (RCS) and radial (RRS) ones, along with global longitudinal, circumferential (GCS), and radial (GRS) strains were measured. Patients with microvascular dysfunction had decreased peak amplitude of RLS (p = 0.012), RCS (p < 0.001), RRS (p = 0.012) at the regional level and decreased peak amplitude of GCS (p = 0.005), GRS (p = 0.012) at the global level. The RCS to RLS and RCS to RRS ratios were significantly different between patients without than with microvascular dysfunction (1.28 ± 0.31 vs. 1.07 ± 0.47, p = 0.027 and 0.69 ± 0.33 vs. 0.56 ± 0.28, p = 0.047). Receiver operator characteristics curves identified a cutoff value of 94 frames for TMPFC to differentiate between normal and abnormal wall motion score index in the sub-acute phase ...
Source: The International Journal of Cardiovascular Imaging - Category: Radiology Source Type: research