Multidimensional Analysis of Hippocampal Excitatory Neurotransmission and Development of Analytical Tools for Glycans.

Multidimensional Analysis of Hippocampal Excitatory Neurotransmission and Development of Analytical Tools for Glycans. Yakugaku Zasshi. 2015;135(12):1341-8 Authors: Minami A Abstract   Sialidase removes sialic acid residues from sialoglycoconjugates such as glycoproteins and glycolipids. Since sialic acid plays crucial roles in synaptic plasticity and memory in the hippocampus, the regulation of sialyl signaling by sialidase is also necessary for neural functions. However, since mammalian sialidase activity is remarkably weak, it has been difficult to detect sialidase activity in mammalian tissues. Determination of the distribution of sialidase activity in living mammalian tissues would provide much valuable information for understanding the roles of sialidase in physiological functions. Therefore, we synthesized a novel benzothiazolylphenol-based sialic acid derivative (BTP-Neu5Ac) as a fluorescent sialidase substrate. After cleavage of BTP-Neu5Ac, which is water soluble and shows little fluorescence, with sialidase, the water-insoluble fluorophore benzothiazolylphenol (BTP) released from BTP-Neu5Ac stains tissue and shows bright fluorescence. BTP-Neu5Ac can visualize sialidase activity in brain tissue with high levels of sensitivity and specificity. The sialidase expression level is markedly high in various human cancers such as colon, renal, prostate, and ovarian cancers. BTP-Neu5Ac can detect human colon cancers sensitively. Th...
Source: Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan - Category: Drugs & Pharmacology Authors: Tags: Yakugaku Zasshi Source Type: research