Genome Pioneer: We Have The Dangerous Power To Control Evolution

J. Craig Venter is the pioneering cartographer of the human genome, the sequence of which he and other scientists mapped in 2000. The WorldPost recently spoke with this modern Prometheus about the promises and perils of being able to read, write and edit the human genome. You have said that humankind is entering a “new phase of evolution” -- from natural selection to intelligent direction. Why is this so, and what does it mean? Biological evolution has taken three and a half or four billion years to get us where we are. Social evolution has been much faster. Now that we can read and write the genetic code, put it in digital form and translate it back into synthesized life, it will be possible to speed up biological evolution to the pace of social evolution. On a theoretical basis, that gives us control over biological design. We can write DNA software, boot it up to a converter and create unlimited variations on biological life. This year is the fifth anniversary of when my team produced the first synthetic cell. To do that, we took the ones and zeroes in the computer, rewrote the genetic code from four bottles of chemicals and booted that up to get a self-replicating cell. That means we now have the power to start controlling evolution.   We’re doing this now in cells that can change manufacturing and create a new industrial revolution by creating synthetic food, chemicals and even building materials. Ultimately, as we begin to better understa...
Source: Science - The Huffington Post - Category: Science Source Type: news

Related Links:

This study suggests that exocrine glands can be induced from pluripotent stem cells for organ replacement regenerative therapy. Replacement of Aged Microglia Partially Reverses Cognitive Decline in Mice https://www.fightaging.org/archives/2018/10/replacement-of-aged-microglia-partially-reverses-cognitive-decline-in-mice/ Researchers here report on a compelling demonstration that shows the degree to which dysfunctional microglia contribute to age-related neurodegeneration. The scientists use a pharmacological approach to greatly deplete the microglial population and then allow it to recover naturally. The...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, senescence of vascular cells promotes the development of age-related disorders, including heart failure, diabetes, and atherosclerotic diseases, while suppression of vascular cell senescence ameliorates phenotypic features of aging in various models. Recent findings have indicated that specific depletion of senescent cells reverses age-related changes. Although the biological networks contributing to maintenance of homeostasis are extremely complex, it seems reasonable to explore senolytic agents that can act on specific cellular components or tissues. Several clinical trials of senolytic agents are currentl...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Discussion of advocacy for the cause is a usual feature of our community, as we try things and attempt to make progress in persuading the world that rejuvenation research is plausible, practical, and necessary. There are more people engaged in advocacy now than at any time in the past decade, and so discussions of strategy come up often. New ventures kicked off in 2017 include the Geroscience online magazine, and among the existing ventures the LEAF / Lifespan.io volunteers seem to be hitting their stride. The mainstream media continues to be as much a hindrance as a help, and where it is a help you will usually find Aubre...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study cohort is a healthy subset of the EpiPath cohort, excluding all participants with acute or chronic diseases. With a mediation analysis we examined whether CMV titers may account for immunosenescence observed in ELA. In this study, we have shown that ELA is associated with higher levels of T cell senescence in healthy participants. Not only did we find a higher number of senescent cells (CD57+), these cells also expressed higher levels of CD57, a cell surface marker for senescence, and were more cytotoxic in ELA compared to controls. Control participants with high CMV titers showed a higher number of senes...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In this study, we have shown that the lipid chaperones FABP4/FABP5 are critical intermediate factors in the deterioration of metabolic systems during aging. Consistent with their roles in chronic inflammation and insulin resistance in young prediabetic mice, we found that FABPs promote the deterioration of glucose homeostasis; metabolic tissue pathologies, particularly in white and brown adipose tissue and liver; and local and systemic inflammation associated with aging. A systematic approach, including lipidomics and pathway-focused transcript analysis, revealed that calorie restriction (CR) and Fabp4/5 deficiency result ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This study developed the first procedure for the removal of epithelium from the lung airway with the full preservation of vascular epithelium, which could be applied in vivo to treat diseases of lung epithelium. Whole lung scaffolds with an intact vascular network may also allow for recellularization using patient-specific cells and bioengineering of chimeric lungs for transplantation. In addition to the clinical potential, lung scaffolds lacking an intact epithelial layer but with functional vascular and interstitial compartments may also serve as a valuable physiological model for investigating (i) lung development, (ii)...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Accidents | Biology | Brain | Brain Cancers | Cancer | Cancer & Oncology | Cardiology | Chemistry | Computers | Databases & Libraries | Diabetes | Endocrinology | Eyes | Genetics | Government | Health | Heart | Heart Disease | Heart Transplant | Internet | Kidney Transplant | Kidney Transplantation | Laboratory Medicine | Learning | Legislation | Lung Transplant | Neurology | Organ Donation | Science | Transplants | Universities & Medical Training | Urology & Nephrology | Websites