Towards a Novel Spatially-Resolved Hemolysis Detection Method Using a Fluorescent Indicator and Loaded Ghost Cells: Proof-of-Principle

In this study, a novel spatially-resolved measurement principle is proposed. Ghost cells (i.e. erythrocytes with a lower hemoglobin concentration) were loaded with a calcium–dicitrato complex, and a fluorescent calcium indicator was suspended in the extracellular medium. Calcium and indicator are separated until the cell membrane ruptures (i.e. hemolysis occurs). In the moment of hemolysis, the two compounds bind to each other and emit a fluorescent signal that can be recorded and spatially-resolved in a setup very similar to a standard Particle Image Velocimetry measurement. A proof-of-principle experiment was performed by intentionally inducing hemolysis in a flow-model with a surfactant. The surfactant-induced hemolysis demonstrated a clear increase of the fluorescent signal compared to that of a negative reference. Furthermore, the signal was spatially restricted to the area of hemolysis. Although further challenges need to be addressed, a successful proof-of-principle for novel spatially-resolved hemolysis detection is presented. This method can contribute to better design optimization of devices with respect to flow-induced hemolysis.
Source: Cardiovascular Engineering and Technology - Category: Cardiology Source Type: research