Genetically encoded voltage indicators for large scale cortical imaging come of age.

Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr Opin Chem Biol. 2015 Jun 23;27:75-83 Authors: Knöpfel T, Gallero-Salas Y, Song C Abstract Electrical signals are fundamental to cellular sensing, communication and motility. In the nervous system, information is represented as receptor, synaptic and action potentials. Understanding how brain functions emerge from these electrical signals is one of the ultimate challenges in neuroscience and requires a methodology to monitor membrane voltage transients from large numbers of cells at high spatio-temporal resolution. Optical voltage imaging holds longstanding promises to achieve this, and has gained a fresh powerful momentum with the development of genetically encoded voltage indicators (GEVIs). With a focus on neuroimaging studies on intact mouse brains, we highlight recent advances in this field. PMID: 26115448 [PubMed - as supplied by publisher]
Source: Current Opinion in Chemical Biology - Category: Biochemistry Authors: Tags: Curr Opin Chem Biol Source Type: research