p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy

The gene therapy approach based on reestablishment of p53 tumor suppressor, which acts as a prevailing guardian against malignant cell transformation, is raising new prospects on the outcome of an effective anticancer treatment. It is well known that the success of gene transfer to cells and subsequent expression is strictly affected by the vector manufacturing process. Therefore, several downstream methods have been proposed to achieve high quantities of supercoiled plasmid DNA with pharmaceutical grade purity. Affinity chromatography with amino acids as ligands has recently yielded interesting results because these ligands take advantage of their biological function or chemical structure to promote specific interactions with different nucleic acids. Here, we describe detailed procedures for the preparation and purification of supercoiled plasmid DNA, with the purity degree required by regulatory agencies, by using arginine affinity chromatography. With this methodology pure pDNA is obtained, efficient on eukaryotic cell transfection and biologically active, resulting in the reestablishment of the p53 protein levels in cancer cell lines.
Source: Springer protocols feed by Cancer Research - Category: Cancer & Oncology Source Type: news

Related Links:

Abstract Cisplatin (CisPt) is one of the most effective antitumor drugs against a wide range of solid cancers, and recent studies have indicated that combination of CisPt and RNA interference (RNAi) agents would effectively enhance therapeutic index, while the development of simple yet robust dual-delivery systems still remains a challenge. Here, we demonstrated that platinated graphene oxide is an excellent platform to achieve such goal. Nano-Graphene oxide (NGO) was easily platinated by CisPt, and the resulting CisPt/NGO was characterized by several aspects. As a proof-of-concept, an antisense MicroRNA-21 (Anti-...
Source: European Journal of Pharmaceutical Sciences - Category: Drugs & Pharmacology Authors: Tags: Eur J Pharm Sci Source Type: research
Publication date: 30 July 2018 Source:International Journal of Pharmaceutics, Volume 546, Issues 1–2 Author(s): Jun Li, Huamin Liang, Jing Liu, Ziyuan Wang Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, ...
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research
Authors: Liu X, Hu J, Li Y, Cao W, Wang Y, Ma Z, Li F Abstract Development of an improved breast cancer therapy has been an elusive goal of cancer gene therapy for a long period of time. Human mesenchymal stem cells derived from umbilical cord (hUMSCs) genetically modified with the interleukin (IL)-18 gene (hUMSCs/IL-18) were previously demonstrated to be able to suppress the proliferation, migration and invasion of breast cancer cells in vitro. In the present study, the effect of hUMSCs/IL-18 on breast cancer in a mouse model was investigated. A total of 128 mice were divided into 2 studies (the early-effect study...
Source: Oncology Letters - Category: Cancer & Oncology Tags: Oncol Lett Source Type: research
Abstract Gene therapy has demonstrated effectiveness in many genetic diseases as evidenced by recent clinical applications. Viral vectors have been extensively tested in clinical gene-therapy trials, but nonviral vectors such as cationic polymers or lipids are much less used due to their lower gene-transfection efficiencies. However, the advantages of nonviral vectors, such as easily tailored structures, nonimmunogenetics, and relatively low cost, still drive great efforts to improve their transfection efficiencies. A reverse question asks if nonviral vectors with current gene transfection efficiency can find appl...
Source: Biomacromolecules - Category: Biochemistry Authors: Tags: Biomacromolecules Source Type: research
Human Gene Therapy, Ahead of Print.
Source: Human Gene Therapy - Category: Genetics & Stem Cells Authors: Source Type: research
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
This recent interview with Gary Hudson of Oisin Biotechnologies covers a range of topics; there is a lot more to it than is quoted here. The company is working on the application of a programmable gene therapy to the targeted destruction of senescent and cancerous cells. Since the approach can be adjusted to kill cells that express significant amounts of any arbitrarily selected target protein, it can in principle be adapted to destroy other types of unwanted cell. The immune system in older individuals or patients with autoimmune diseases, for example, contains any number of problem cells that it would be beneficial to re...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
In this study, we did not observe significant age-dependent upregulation of the prominent SASP cytokine Il6 in any tissue, although an upward trend was observed that was consistent in magnitude with previous observations in the heart and kidney. This modest age-related upward trend could be explained by a previous report which demonstrated that senescent cell-secreted IL-6 acts in an autocrine manner, reinforcing the senescent state, rather than inducing senescence or promoting dysfunction in neighboring cells. The decreased expression of Il6 with age we observed in the hypothalamus could be indicative of a lack or ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
The Undoing Aging conference in Berlin is presently underway, a gathering of everyone who is anyone in the rejuvenation research community. It is hosted jointly by the SENS Research Foundation and the Forever Healthy Foundation, and is a unification of the varied themes of the past fifteen years of SENS conferences: the science of aging and its treatment from the earlier SENS conference series mixed with the industry, startup, and commercial development focus of the Rejuvenation Biotechnology series of recent years. The first rejuvenation therapies to be implemented and shown to work, those based on clearance of sen...
Source: Fight Aging! - Category: Research Authors: Tags: Healthy Life Extension Community Source Type: blogs
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Cancer | Cancer & Oncology | Cancer Therapy | Chemistry | Gene Therapy | Genetics