Studying trabecular bone samples demonstrates a power law relation between deteriorated structure and mechanical properties -  a study combining 3D printing with the finite element method

In this study, we 3D printed structural-identical but BV/TV value-attenuated trabecular bones (scaled up ×20) from the distal femur of healthy and ovariectomized rats and performed compression mechanical tests. Corresponding μFEM models were also established for simulations. The tissue modulus and strength of 3D printed trabecular bones as well as the effective tissue modulus (denoted as Ez) derived from μFEM models were finally corrected by the side-artifact correction factor.ResultsThe results showed that the tissue modulus corrected, strength corrected and Ez corrected exhibited a significant power law function of BV/TV in structural-identical but BV/TV value-attenuated trabecular samples. DiscussionUsing 3D printed bones, this study confirms the long-known relationship measured in trabecular tissue with varying volume fractions. In the future, 3D printing may help us attain better bone strength evaluations and even personal fracture risk assessments for patients who suffer from osteoporosis.
Source: Frontiers in Endocrinology - Category: Endocrinology Source Type: research