A pharmacologically pre-contracted smooth muscle bowel model for the study of highly-potent opioid receptor agonists and antagonists

Toxicol Lett. 2023 May 26:S0378-4274(23)00187-X. doi: 10.1016/j.toxlet.2023.05.010. Online ahead of print.ABSTRACTIsolated organ models are a versatile tool for pharmacological and toxicological research. Small bowel has been used to assess the inhibition of smooth muscle contraction by opioids. In the present study, we set out to establish a pharmacologically stimulated rat bowel model. The effects of carfentanil, remifentanil and the new synthetic opioid U-48800 and their respective antagonists naloxone, nalmefene and naltrexone were studied in a small bowel model in rats. The IC50 values of the tested opioids were as follows: carfentanil (IC50 = 0.02 µmol/L, CI 0.02-0.03 µmol/L) ≫ remifentanil (IC50 = 0.51 µmol/L, CI 0.40-0.66 µmol/L) ≫ U-48800 (IC50 = 1.36 µmol/L, CI 1.20-1.54 µmol/L). The administration of the opioid receptor antagonists naloxone, naltrexone and nalmefene led to progressive, parallel rightward shifts of the dose-response curves. Naltrexone was most potent in antagonizing the effects of U-48800, whereas naltrexone and nalmefene were most effective in antagonizing the effects of carfentanil. In summary, the current model seems to be a robust tool to study opioid effects in a small bowel model without the necessity of using electrical stimulation.PMID:37245850 | DOI:10.1016/j.toxlet.2023.05.010
Source: Toxicology Letters - Category: Toxicology Authors: Source Type: research
More News: Study | Toxicology