AmpC inhibition: An Explicit Approach against Multi-Drug Resistance (MDR)

Curr Top Med Chem. 2023 May 4. doi: 10.2174/1568026623666230504095005. Online ahead of print.ABSTRACTMulti-drug resistance and its transmission is a ubiquitous health issue worldwide. The beta-lactamase AmpC resistance is a major concern among all health settings like hospitals and child care centers, etc. The clinical pipeline of the new antibiotics remains dry due to the production of AmpC beta-lactamases by the bacteria to develop resistance against antibiotics. According to the global antimicrobial resistance and use surveillance system, the rate of resistance to ciprofloxacin an antibiotic commonly used to treat urinary tract infections, varied from 8.4% to 92.9% for Escherichia coli and from 4.1% to 79.4% for Klebsiellapneumoniae in different countries. The lack of comprehensiveness within the data makes a choice problematic for the selection of appropriate βlactam antibiotic for the treatment of resistant microorganisms. Most experts agree it is prudent to avoid expanded-spectrum (i.e. third-generation) cephalosporins for the treatment of organisms posing the greatest risk of AmpC induction. Nonetheless, the development of specific inhibitors for the AmpC enzyme, either naturally or synthetically, is only unfolding. To date, there is no single and clinically active drug available that inhibits the AmpC enzyme and combats multidrug resistance and its transmission in individuals. The deficit of the enzyme inhibitor focused the researchers to work in the area. This prese...
Source: Current Topics in Medicinal Chemistry - Category: Chemistry Authors: Source Type: research