High-pressure processing effect on conjugal antibiotic resistance genes transfer in vitro and in the food matrix among strains from starter cultures

This study analyzed the effect of high-pressure processing (HPP) on the frequency of conjugal gene transfer of antibiotic resistance genes among strains obtained from starter cultures. Gene transfer ability was analyzed in vitro and in situ in the food matrix. It was found that the transfer of aminoglycoside resistance genes did not occur after high-pressure treatment, either in vitro or in situ. After exposure to HPP, the transfer frequencies of tetracycline, ampicillin and chloramphenicol resistance genes increased significantly compared to the control sample, both in vitro and in situ. The frequency of resistance genes transfer in the food matrix in the pressurized samples did not differ significantly from the in vitro transfer rate. Minimum Inhibitory Concentrations (MICs) for these antibiotics determined for transconjugants were lower or equal to MICs determined for the donors. No significant differences were observed between the MIC values determined for the transconjugants obtained in vitro and in situ. The results suggest that HPP may contribute to the spread of antibiotic resistance. This points to the need to verify starter cultures strains for their antibiotic resistance and pressurization parameters to avoid spreading antibiotic resistance genes.PMID:36706580 | DOI:10.1016/j.ijfoodmicro.2023.110104
Source: International Journal of Food Microbiology - Category: Food Science Authors: Source Type: research