A hybrid learning framework for fine-grained interpretation of brain spatiotemporal patterns during naturalistic functional magnetic resonance imaging

Naturalistic stimuli, including movie, music, and speech, have been increasingly applied in the research of neuroimaging. Relative to a resting-state or single-task state, naturalistic stimuli can evoke more intense brain activities and have been proved to possess higher test–retest reliability, suggesting greater potential to study adaptive human brain function. In the current research, naturalistic functional magnetic resonance imaging (N-fMRI) has been a powerful tool to record brain states under naturalistic stimuli, and many efforts have been devoted to study the high-level semantic features from spatial or temporal representations via N-fMRI. However, integrating both spatial and temporal characteristics of brain activities for better interpreting the patterns under naturalistic stimuli is still underexplored. In this work, a novel hybrid learning framework that comprehensively investigates both the spatial (via Predictive Model) and the temporal [via convolutional neural network (CNN) model] characteristics of the brain is proposed. Specifically, to focus on certain relevant regions from the whole brain, regions of significance (ROS), which contain common spatial activation characteristics across individuals, are selected via the Predictive Model. Further, voxels of significance (VOS), whose signals contain significant temporal characteristics under naturalistic stimuli, are interpreted via one-dimensional CNN (1D-CNN) model. In this article, our proposed framework i...
Source: Frontiers in Human Neuroscience - Category: Neuroscience Source Type: research