Heat-Stimuli Shape Memory Effect of Poly ( ε-Caprolactone)-Cellulose Acetate Composite Tubular Scaffolds

In this study, seven types of poly(-caprolactone)-cellulose acetate (PCL-CA) composite nanofiber membranes were prepared with different proportions of PCL and CA. The adhesion and growth of Mc3t3-e1 cells were considered to confirm the in vitro cytocompatibility of PCL-CA membranes. A smooth stainless-steel mandrel with a diameter of 4 mm was used to roll up the prepared nanofiber membranes to produce the tubular scaffold with 50 °C hot water. The tubular scaffolds were subjected to axial and circumferential tensile tests. The mechanical performance of the PCL-CA tubular scaffold could be improved by increasing the layers. In addition, the burst pressure (BP) of the tubular scaffolds was increased with the layers, and the BPs of six-layer (2380 ± 36.8 mmHg) and eight-layer (3720 ± 80.5 mmHg) tubular scaffolds were much higher than that of the human saphenous vein (2000 mmHg). The compression shape memory performances of the PCL-CA tubular scaffold with different layers were also investigated to simulate and analyze the contraction and expansion of tubular scaffolds. The experimental results showed that the compression strain of the tubular scaffold in the diameter direction reached 35%, and the ultimate shape recovery rate reached 87%. However, the shape fixity rate and shape recovery rate increased, demonstrating that the optimum number of layers can improve the compression shape memory performance of the tubular scaffold. The results of this study, including comprehensiv...
Source: Biomacromolecules - Category: Biochemistry Authors: Source Type: research