Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resourses

Legume crops provide significant nutrition to humans as a source of protein, omega-3 fatty acids as well as specific macro and micronutrients. Additionally, legumes improve the cropping environment by replenishing the soil nitrogen content. Chickpeas are the second most significant staple legume food crop worldwide behind dry bean which contains 17%–24% protein, 41%–51% carbohydrate, and other important essential minerals, vitamins, dietary fiber, folate, β-carotene, anti-oxidants, micronutrients (phosphorus, calcium, magnesium, iron, and zinc) as well as linoleic and oleic unsaturated fatty acids. Despite these advantages, legumes are far behind cereals in terms of genetic improvement mainly due to far less effort, the bottlenecks of the narrow genetic base, and several biotic and abiotic factors in the scenario of changing climatic conditions. Measures are now called for beyond conventional breeding practices to strategically broadening of narrow genetic base utilizing chickpea wild relatives and improvement of cultivars through advanced breeding approaches with a focus on high yield productivity, biotic and abiotic stresses including climate resilience, and enhanced nutritional values. Desirable donors having such multiple traits have been identified using core and mini core collections from the cultivated gene pool and wild relatives of Chickpea. Several methods have been developed to address cross-species fertilization obstacles and to aid in inter-specific hybridiz...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research