Coordinated activation of TGF- β and BMP pathways promotes autophagy and limits liver injury after acetaminophen intoxication

Sci Signal. 2022 Jun 28;15(740):eabn4395. doi: 10.1126/scisignal.abn4395. Epub 2022 Jun 28.ABSTRACTLigands of the transforming growth factor-β (TGF-β) superfamily, including TGF-βs, activins, and bone morphogenetic proteins (BMPs), have been implicated in hepatic development, homeostasis, and pathophysiology. We explored the mechanisms by which hepatocytes decode and integrate injury-induced signaling from TGF-βs and activins (TGF-β/Activin) and BMPs. We mapped the spatiotemporal patterns of pathway activation during liver injury induced by acetaminophen (APAP) in dual reporter mice carrying a fluorescent reporter of TGF-β/Activin signaling and a fluorescent reporter of BMP signaling. APAP intoxication induced the expression of both reporters in a zone of cells near areas of tissue damage, which showed an increase in autophagy and demarcated the borders between healthy and injured tissues. Inhibition of TGF-β superfamily signaling by overexpressing the inhibitor Smad7 exacerbated acute liver histopathology but eventually accelerated tissue recovery. Transcriptomic analysis identified autophagy as a process stimulated by TGF-β1 and BMP4 in hepatocytes, with Trp53inp2, which encodes a rate-limiting factor for autophagy initiation, as the most highly induced autophagy-related gene. Collectively, these findings illustrate the functional interconnectivity of the TGF-β superfamily signaling system, implicate the coordinated activation of TGF-β/Activin and BMP pathways in ...
Source: Science Signaling - Category: Biomedical Science Authors: Source Type: research