Application of deep neural network and gamma-ray scattering in eccentric scale calculation regardless of the fluids volume fraction inside a pipeline

Appl Radiat Isot. 2022 Jun 30;188:110353. doi: 10.1016/j.apradiso.2022.110353. Online ahead of print.ABSTRACTScale formation is one of the major problems in the oil industry as it can accumulate on the surface of the pipelines, which could even fully block the fluids' passage. It was developed a methodology to detect and quantify the maximum thickness of eccentric scale inside pipelines using nuclear techniques and an artificial neural network. The measurement procedure is based on gamma-ray scattering using NaI(Tl) detectors and a137Cs radiation source that emits gamma-rays of 662 keV. The simulations considered an annular flow regime composed of barium sulfate scale, oil, saltwater and gas, and three percentages of these fluids were used. In the present investigation, a study of detectors configuration was carried out to improve the measurement geometry and the simulations were made using the MCNP6 code, which is a mathematical code based on the Monte Carlo method. The counts registered in the detectors were used as input data to train a deep neural network (DNN) that uses rectifier activation functions instead of the usually sigmoid-based ones. In addition, a hyperparameters search was made using open software to develop the final DNN architecture. Results showed that the best detector configuration was able to predict 100% of the patterns with the maximum relative error of 5%. Moreover, the achieved mean absolute percentage error was 0.42% and the regression coefficient w...
Source: Applied Radiation and Isotopes - Category: Radiology Authors: Source Type: research
More News: Radiology | Study