Development of an equipment for real-time continuous monitoring of alpha and beta radioactivity in river water

Appl Radiat Isot. 2022 Jun 10;187:110322. doi: 10.1016/j.apradiso.2022.110322. Online ahead of print.ABSTRACTDifferent regulations require the monitoring of radioactivity in the environment (e.g., 2013/51/Euratom, Real Decreto 314/2016) to protect the environment and the population from abnormal radioactivity presence caused by natural reasons or discharges or accidents in nuclear installations. Nowadays, the monitoring of α- and β-emitting radionuclides is performed discontinuously in laboratories due to the difficulties in applying classical techniques to continuous measurements. This limits the number of samples that can be measured per day, produces high costs per analysis, and introduces a significant delay between the moment of contamination and when it is detected. Plastic scintillation microspheres (PSm) represent a new possibility for continuous measurements because water samples can flow through a bed of PSm connected to a pair of photomultipliers (PMTs), allowing continuous monitoring of the activity. This idea is the basis of the Waterrad detector, which can monitor radioactivity at environmental levels in river water. This paper describes the optimization of a detection cell containing PSm, a detection chamber as well as active and passive shielding. In its final set-up, the Waterrad detector presents a background signal of 0.23 (1) cps and detection efficiencies of 1.86(7)·10-5 cps·L·Bq-1 for 3H, 7.4(8)·10-3 cps·L·Bq-1 for 90Sr/90Y and 5.5(5)·10-3 cps·...
Source: Applied Radiation and Isotopes - Category: Radiology Authors: Source Type: research