Linear interactions between intraocular, intracranial pressure, and retinal vascular pulse amplitude in the fourier domain

by Anmar Abdul-Rahman, William Morgan, Ying Jo Khoo, Christopher Lind, Allan Kermode, William Carroll, Dao-Yi Yu PurposeTo compare the retinal vascular pulsatile characteristics in subjects with normal (ICPn) and high (ICPh) intracranial pressure and quantify the interactions between intraocular pressure, intracranial pressure, and retinal vascular pulse amplitude in the Fourier domain. Materials and methodsTwenty-one subjects were examined using modified photoplethysmography with simultaneous ophthalmodynamometry. A harmonic regression model was fitted to each pixel in the time-series, and used to quantify the retinal vascular pulse wave parameters including the harmonic regression wave amplitude (HRWa). The pulse wave attenuation was measured under different ranges of induced intraocular pressure (IOPi), as a function of distance along the vessel (VDist). Intracranial pressure (ICP) was measured using lumbar puncture. A linear mixed-effects model was used to estimate the correlations between the Yeo-Johnson transformed harmonic regression wave amplitude (HRWa-YJt) with the predictors (IOPi, VDist and ICP). A comparison of the model coefficients was done by calculating the weighted Beta (βx) coefficients. ResultsThe median HRWa in the ICPn group was higher in the retinal veins (4.563, interquartile range (IQR) = 3.656) compared to the retinal arteries (3.475, IQR = 2.458), p
Source: PLoS One - Category: Biomedical Science Authors: Source Type: research