Discovery of highly potent and selective CRBN-recruiting EGFR < sup > L858R/T790M < /sup > degraders in vivo

Eur J Med Chem. 2022 Jun 6;238:114509. doi: 10.1016/j.ejmech.2022.114509. Online ahead of print.ABSTRACTCurrently, epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are widely used in the treatment of non-small cell lung cancer (NSCLC). However, the inevitable drug resistance and side effects are the current main obstacle, which motivating novel therapies. Proteolysis targeting chimera (PROTAC), a lately-developed technology to target proteins for degradation, has been utilized for drug development. Therefore, we designed, synthesized and evaluated a series of CRBN-recruiting EGFR degraders. Among them, 13a and 13b significantly inhibited NCI-H1975 cells proliferation with IC50 values of 58.08 nM and 46.82 nM, respectively, whereas exhibited more than 100 μM against A549 or H1299 cells, whose selectivity was more than 1700-fold. 13a and 13b potently induced the EGFRL858R/T790M degradation by ubiquitin proteasome system in a time- and dose-dependent manner but not that of EGFRWT, and the DC50 values of 13b was 13.2 nM, which was the most potent compound in current known CRBN-recruiting EGFRL858R/T790M degraders. 13a and 13b dramatically induced cell apoptosis, cell cycle arrest and inhibited downstream signaling pathways. Furthermore, 13a and 13b effectively and selectively inhibited NCI-H1975 xenograft tumor growth with good pharmacokinetics (PK) properties in vivo. These findings demonstrate that 13a and 13b could serve as candidates for developing the...
Source: European Journal of Medicinal Chemistry - Category: Chemistry Authors: Source Type: research